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Abstract-The effects of external insulation and tube rotation on the heat transfer to a fluid flowing inside 
a tube are examined by analysis. The turbulent flow is assumed to be hydrodynamically fully developed. 
Heat transfer was found to be strongly suppressed by tube rotation. It is shown that the significance of 

external insulation on the Nusselt number increases with growing rotation rate of the pipe. 

INTRODUCTION 

FLUID flow and heat transfer in rotating pipes are 
not only of considerable theoretical interest, but also 
of great practical importance. An obvious technical 
application is a rotating power transmission shaft that 
is longitudinally bored and through which a fluid is 
pumped for cooling of turbine blades or for other 
purposes. The interactions between centrifugal forces 
and turbulence have been investigated experimentally 
and by analysis. In 1929, Levy [l] studied exper- 
imentally the flow in rotating pipes. Murakami and 
Kikuyama [2] measured the time-mean velocity com- 
ponents and hydraulic losses in an axially rotating 
pipe when a fully developed turbulent flow was intro- 
duced into the pipe. The pipe rotation was found to 
suppress the turbulence in the flow, and also to reduce 
the hydraulic loss. With increasing rotational speed 
the axial velocity distribution finally approaches the 
Hagen-Poiseuille flow. Kikuyama et al. [3] calculated 
the velocity distribution in the fully developed region 
of a rotating pipe with the help of a modified mixing 
length theory proposed by Bradshaw [4]. They 
assumed the tangential velocity to have a parabolic 
distribution v&,, = (r/R)* in the fully developed 
region, which was confirmed by experiments [2,3]. 
Reich and Beer [5] examined experimentally and by 
analysis the effect of tube rotation on the velocity 
distribution and the heat transfer to a fluid flowing 
inside a tube for fully developed turbulent flow con- 
ditions. They observed a remarkable decrease in heat 
transfer with increasing rotation rate, N = Re,/Re,,. 

For a hydrodynamic fully developed turbulent flow 
the thermal entrance region was examined by Wei- 
gand and Beer [6]. Their analytical investigation 
showed that the thermal entrance length increases 
remarkably with growing rotation rate. The theor- 
etical findings were in good agreement with exper- 
iments. The theoretical analysis in ref. [6] was per- 
formed only for the boundary conditions of a constant 
heat flux and a constant temperature at the pipe wall. 
In most technical equipments, however, such bound- 

ary conditions will not prevail. In many cases the 
condition at the tube wall can be approximated more 
realistically with the help of a boundary condition of 
the third kind. In this case, constant wall heat flux 
and constant wall temperature represent limiting 
boundary conditions. 

ANALYSIS 

An analysis of the thermally developing turbulent 
flow, with fully developed velocity profile, is of great 
practical importance, because in most rotating machin- 
ery the geometric configurations are not long enough 
to guarantee fully developed flow conditions. By 
assuming an incompressible Newtonian fluid, with 
constant fluid properties, the equations of motion and 
the energy equation are uncoupled and can be solved 
separately. For the case of fully developed flow con- 
ditions, the momentum equations have been solved in 
ref. [5]. Figure 1 shows axial velocity profiles for two 
different flow-rate Reynolds numbers, with the 
rotation rate N as parameter. The influence of tube 
rotation on the axial velocity profile is obvious. With 
increasing rotation rate N the axial velocity profiles 
approach the parabolic shape of Hagen-Poiseuille 
flow, which corresponds to an increasing turbulence 
suppression due to pipe rotation. In Fig. 2 the dis- 
tribution of the tangential velocity profile is depicted 
for two different flow-rate Reynolds numbers and 
different values of N. For hydrodynamically fully 
developed flow conditions no influence of the Reyn- 
olds number and of N upon the shape of the tangential 
velocity profile can be observed. Therefore, the tan- 
gential velocity profile was approximated by 

according to refs. [2,5]. For comparison, exper- 
imental results from ref. [5] are plotted in Figs. 1 
and 2. Generally, the agreement between theory and 
experiments is found to be good. 

Now, consideration is given to a fluid flowing inside 
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NOMENCLATURE 

specific heat at constant pressure 
pipe diameter, 2R 

thermal conductivity 
hydrodynamic and thermal mixing 
length 
rotation rate, Re,,_/ Re,, 

Nusselt number 
Prandtl number 
heat flux density 
inner pipe radius 
outer pipe radius 
coordinate in radial direction 

flow-rate Reynolds number 
rotational Reynolds number 

temperature 
ambient temperature 
bulk temperature 
velocity 
tangential velocity at the pipe wall 

i;_ mean axial velocity over the pipe cross- 
section 

: axial coordinate. 

Greek symbols 

external heat transfer coeffL%nt 
: convective parameter 
0 dimensionless temperature 

4, cigenvalucs 

0 density 

X overall heat transfer coefficient. 

Subscripts 
,‘ radial 
w wall 

axial 
0 inlet 

(P tangential 
“L fully developed. 

a circular tube from left to right, as shown in Fig. 3, 
with a fully established velocity profile. The pipe 

rotates about its axis with constant angular velocity 
(11. For z < 0 the fluid is considered to have a uniform 
temperature T,,. For 2 > 0, heat transfer takes place 
by conduction through the tube wall and by con- 
vection to the surroundings, which is maintained at a 
constant ambient temperature T,. Under the assump- 
tions of negligible viscous dissipation as well as axial 
conduction in the fluid and in the tube wall and by 

Theory: 

,N= 5 

Experiment L51: 
0 N=O 
0 N= 0.5 
A N= 1 

A N= 2 
m N=3 
o N=5 

considering the rotational symmetry of the problem, 
the energy equation takes the following form : 

The radial component of the heat flux vector 4, can be 
modelled as a function of the time smoothed variables, 
with the help of a modified mixing length theory, 
according to [S] 

Theory: 

Experiment 151: 

l N=O 

0 N= 0.5 

A N- 1 

FIG. I. Axial velocity distribution as a function of the rotation rate N 
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Experiment 151 

A N-l 
D N-5 

1.0 

“Ul 

"QW 

t 

0.5 

Experiment 151: 

0 N= 0.5 

FIG. 2. Tangential velocity distribution as a function of the rotation rate N. 

,k. 

FIG. 3. Physical model and coordinate system. 

+(r$(F)J]“2g. (3) 

The mixing lengths I and I, are strongly influenced by 
tube rotation. For high values of the rotation rate N 
the mixing lengths tend to zero and, therefore, heat 
transfer in the fluid is dominated by conduction, per- 
pendicular to the flow direction. For further details 

the reader is referred to refs. [5, 61. 
The boundary conditions belonging to the energy 

equation (2) are 

z=o: T= T,, 

z > 0,r = 0: aT/dr = 0 

z>O,r=R: -k(aT/&), = x(T, - T,) (4) 

where x is the overall heat transfer coefficient 

l=[$+:ln($)]. X 

By introducing the following quantities : 

T-T, 
O=y, 

z 4 f=------- 
0 D Re, Pr’ 

pr = !f 
a’ 

A=?!! 
k 

the energy equation (2) is obtained in dimensionless 

form 

I 

(7) 

with the boundary conditions 

i=o: 0 = l-TJT, 

i>o,i=o: asjai=o 

Z>O,i= I: - ae/aP = do (8) 

and with E(f) defined by 

Equation (7), with the boundary conditions according 

to equation (8), represents a certain kind of turbulent 
Graetz problem with finite wall resistance. In the spe- 
cial case of laminar flow heat transfer (E(?) = 1) the 
problem under consideration was treated extensively 

by Hsu [7]. The linear, parabolic differential equation 
(7) can be solved by separation of variables : 

0 = Z(F)H(i). (10) 

After inserting equation (IO) into equations (7) and 
(8), the following Sturm-Liouville system is obtained : 

$[E(i)i $]+i;C,(i)i~. = 0 (11) 

with the boundary conditions 

i=O: dHJdi=O 

f= 1: dHJdF+ AH, = 0 

and an arbitrary normalizing condition 

f=O: H,,= 1. 

(12) 

(13) 

The eigenvalues A,, which appear in the characteristic 
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Table I. Eigenvalues and constants for various Aow-rate Reynolds numbers and varrous values of the convectrvc 
parameter A 

N I , /. .7 7 ; ) ii 1.; 1.: 

Re,, = 10 000, A = 0.5 
0.0 0.9689 28 I.415 806.803 1559.047 2550.369 
I .o 0.9590 132.13X 412.794 X29.43 I 1379.472 
2.0 0.9400 70.789 223.292 453.960 762. LOO 
3.0 0.9160 44.030 138.343 281.900 474.496 
5.0 0.8656 23.719 73.519 149.727 ___._ 153 317 

20.0 0.8085 14.033 43.341 XX.676 I50.030 

Rr,= 10000. A=2 
0.0 3.548 2X6.917 816.173 1572.081 2566.170 
I .o 3.414 136.270 418.566 X37.145 1389.178 
2.0 3.184 74.538 228.095 459.851 769.062 
3.0 2.910 47.499 142.720 2X7.1 I? 480.477 
5.0 2.435 26.690 77.322 154.21 I 257.381 

20.0 3.000 16.51 I 46.552 92.422 154.207 

Re,= 10000. A= IO 
0.0 12.181 306.878 851.879 1624.395 2632.543 
I.0 10.666 150.623 439.642 X66.367 1427.242 
2.0 X.588 X6.163 244.354 480.842 794.x49 
3.0 6.755 56.715 155.959 304.107 501.040 
5.0 4.548 32.5X2 X6.456 166.306 272.206 

20.0 3.169 20.271 52.756 100.902 164.725 

Re,, = 50 000. A = 0.5 
0.0 0.991 I 117.01 I 32X4.826 6432.384 IO 546.700 
I.0 0.986 437.770 1398.714 284X.490 477X.357 
2.0 0.979 21 1.537 681.041 1397.246 235X.361 
3.0 0.967 117.291 376.829 773.957 1308.093 
5.0 0.925 45.497 144.312 295.804 499.818 

20.0 0.809 14.094 43.515 89.020 150.602 

Rc,j = 50 000. A = 2 
0.0 3.854 1122.503 3293.367 6444.581 10563.100 
I .o 3.794 442.020 1404.074 2855.212 4786.690 
2.0 3.681 215.595 685.856 1402.864 2364.821 
3.0 3.510 121.217 381.450 779.248 1314.030 
5.0 3.004 49.004 148.534 300.642 505.208 

20.0 2.004 16.575 46.730 92.772 154.7X6 

Rc,, = 50 000, A = IO 
0.0 16.X07 1148.075 3333.593 6502.517 10641.526 
I.0 15.710 461.414 1428.891 2886.567 4825.780 
2.0 13.X66 233.126 707.335 1428.298 2394.357 
3.0 Il.621 136.676 400.760 801.985 1340.01 I 
5.0 7.282 59.169 162.531 317.857 525.288 

20.0 3.17’) 20.346 52.9X2 101.276 165.334 
_. 

equation (1 l), can he calculated numerically by apply- 
ing the Runge-Kutta method in the following man- 
ner: an eigcnvalue is assumed and the solution of 

equation (I 1) is obtained numerically, according to 

the symmetry condition at the pipe centre and the 
normalizing condition (I 3). After that, the eigenvalue 
is varied until the boundary condition at the pipe wall 
is satisfied within a prescribed error bound, given by 

The calculated eigenvalues i.,,, as well as the constants 
B,,H,,(I), are listed in Table 1 for various values of 

Re,, N and the convective parameter A. 

After obtaining the eigenvalues of equation ( 1 I), 
the temperature distribution within the fluid is 

known : 

0.9693 0.00699 0.004 I I 
0.9591 0.01 I25 0.00500 
0.9400 0.01940 0.00780 
0.9154 0.02980 0.01160 
0.8636 0.05080 0.01990 
0.8034 0.07709 0.02985 

0.8869 0.0238 0.0144 
0.x52.5 0.0374 0.0172 
0.7927 0.0607 0.0259 
0.7212 0.0x52 0.0369 
0.5949 0. I202 0.0562 
0.4770 0.1487 0.0746 

0.6056 0.0590 0.0394 
0.5255 0.0829 0.0435 
0.4153 0. I060 0.0562 
0.3194 0.1118 0.0647 
0.2070 0. IO00 0.066 I 
0.1377 0.0843 0.0622 

0.9906 0.00 16X 0.00088 
0.9867 0.00332 0.00131 
0.978X 0.00662 0.00243 
0.9665 0.01170 0.00426 
0.9244 0.02X50 0.01055 
0.x039 0.07680 0.029x0 

0.9635 
0.94X5 
0.9197 
0.X760 
0.7447 
0.478 I 

0.0063X 0.00339 
0.0 I250 0.00497 
0.02423 0.00909 
0.04105 0.01552 
0.08547 0.03492 
0.14840 0.07449 

0.839’) 0.02485 0.01359 
0.7836 0.04603 0.01927 
0.6876 0.07837 0.03258 
0.5696 0.10825 0.0486X 
0.3432 0.12560 0.07042 
0.1382 0.08433 0.062 I 1 

B,H,(I) 

0.00292 0.00215 
0.00329 0.00247 
0.00460 0.00320 
0.00670 0 00450 
0.01 120 0.00740 
0.0 I636 u.01050 

0.0105 
0.01 I6 
0.0159 
0.0222 
0.0342 
0.0450 

u.007”) 
0.008x 
0.01 I? 
0.0154 
0.0236 
0.03 I5 

0.03 15 0.0256 
0.03 I5 0.0256 
0.03X5 0.0295 
0.0453 0.0350 
0.0497 0.0397 
0.0493 0.0406 

0.00064 0.00053 
0.000X0 0.00059 
0.00 13X 0.00094 
0.00236 0.00156 
0.00583 0.00381 
0 01630 0 0 1050 

0.0024X 0.00203 
0.00307 0.00227 
0.00520 0.00355 
0.00874 0.00583 
0.02000 0.01340 
0.04580 0.03 I50 

0.01010 0.00842 
0.01213 0.009OY 
0.01937 0.01353 
0.02940 0.02044 
0.047 14 0.03468 
0.04926 0.04059 

(15) 

The constants C,, have to be calculated in order to 

meet the required initial condition. After some 
manipulations one gets 

With the available temperature field one can proceed 
to derive the expression for the local Nusseh number, 
which is defined by 
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From equation (15), the temperature gradient at the 

pipe wall is given by 

aT -- 
ar w 

= A 2 i C,H,( 1) em”:‘. (18) 
,Z- I 

Utilizing the definition of the bulk temperature, the 
temperature difference T,-- Tb, which appears in 
equation (16), can be expressed in the following form : 

s 

R 
v,rTdr 

Tb= ’ 

s 

R =2 ‘&iTdi 
s 

(19) 
0 

v.r dr 
0 - 

- f C,,H,,(l) e-+. (20) 
n= I 

After inserting equations (18) and (20) into equation 
(16), the local Nusselt number is found to be 

Nu = 2A f B,H,,(l)e-“i’ 
n= I 

(21) 

RESULTS AND DISCUSSION 

The following results were obtained for air as the 
working fluid with Pr = 0.71. In Fig. 4 the Nusselt 
number for fully developed flow is plotted as a func- 
tion of the flow-rate Reynolds number with the 
rotation rate N as parameter. The variation of the 
Nusselt number with Re, for constant heat flux at the 

D3 

N% 

t 
lo* 

1 ’ “1--&=const.. 
- Tw = const. 

xl3 D4 
- Re, 

105 

FIG. 4. Nusselt number Nu, for fully developed turbulent 
flow. 

wall as well as for constant wall temperature is shown 
for each discrete value of N. The illustration elucidates 
the effect of relaminarization due to pipe rotation. 

With an increase in the rotation rate N, a remarkable 
decrease in the Nusselt number can be observed. For 
N + cc, the Nusselt number gradually approaches the 
value for laminar pipe flow. The curves for the Nusselt 
number for constant wall heat flux and constant wall 
temperature give an upper and a lower limit for the 
distribution of the Nusselt number according to the 
boundary condition of the third kind (see also ref. 
[S]). For large values of the convective parameter A 
one obtains Q = 0 from equation (8), which cor- 
responds to the case of uniform wall temperature. For 
low values of A, equation (8) represents the case of a 
nearly adiabatic wall, which is a special case of a 
constant heat flux at the wall. For low values of the 
rotation rate N, there is no significant difference 
between the Nusselt number for constant heat flux at 
the wall and constant wall temperature. The relative 
difference is approximately 2% and can be neglected. 
With increasing N the Nusselt number approaches the 

value for laminar pipe flow. For this special case, the 
relative difference between the Nusselt numbers, 

(N“l)qw = const. -(Nu.)Tw = const, 
AF = ~~__________ 

(JW ‘& = const. 
-p, (22) 

reaches its maximum of 16% and should, therefore, 
not be neglected. Table 2 shows the relative difference 
AF for different flow-rate Reynolds numbers and vari- 
ous values of N. It can be seen that AF increases with 
decreasing Re,, which is due to the more pronounced 
laminarization of the flow for low values of Re,. 

Figure 5 shows the distribution of the local Nusselt 
number versus z/D for Re, = 10000 and various 

values of N. Every diagram contains curves of the 
local Nusselt number for constant heat flux at the pipe 
wall, for constant wall temperature and for selected 
values of the convective parameter A. It is obvious 
that the curves for low values of A nearly coincide with 
those of the uniform wall heat flux case. The plots 
elucidate the decrease in heat transfer with increasing 
N. The Nusselt number decreases at every axial 
position for growing values of the rotation rate. This 
is due to the strong laminarization of the flow with 
increasing N. 

In Fig. 6, the local Nusselt number, scaled with 

Table 2. Relative difference AFbetween Nusselt numbers for 
& = const. and for T, = const. 

AF (%) 
_____ _.____~_ ~~ ~~ 

Re, = 5000 Re, = 50000 Re, = 100000 

N=O 4.5 2.3 1.7 
N=l 7.1 5.3 4.8 
N=2 9.7 8.3 8.0 
N=3 11.7 10.5 10.0 
N=5 14.0 12.5 12.3 
N-+m 16.3 16.3 16.3 

~~______ 
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FIG. 6. Nusselt number as a function of z;D with N as 
parameter. 

hf. 
D 

FIG. 5. Influence of the convective parameter A on the variation of the local Nusselt number (RP,, = IO 000). 

the Nusselt number for fully developed flow, Nu, . 
is plotted as a function of the axial coordinate for 
Re, = 50000 and A = 10. with N as parameter. A 
remarkable increase in the thermal entrance length 
can be observed with increasing N. For N---t X, the 
thermal entrance length approaches that for a laminar 
pipe flow, which is given by L/D = O.O5Re,, Pv. This 
means that the flow needs more than 200 pipe diam- 
eters to become thermally fully developed for 
Re,, = 50000, Pv = 0.71 and N = 3, for example. This 
elucidates that the disregard of the laminarization 
phenomena in the thermal entrance region of an axi- 
ally rotating pipe will underpredict heat transfer, 
which was also discussed in ref. [6]. 

0 

CONCLUSIONS 

From the preceding analysis the following major 
conclusions may be drawn. 

I. The tube rotation causes a decrease in heat trans- 

fer due to the laminarization of the flow. 
2. With increasing rotation rate N, the thermal 

entrance region is markedly enlarged. This effect is 
nearly independent of the thermal boundary con- 
dition at the pipe wall. 

3. In the cast of a boundary condition of the third 

kind, it is commendable to consider the change in 
Nusselt number for low flow-rate Reynolds numbers 
and N 3 2. 

I. 

2. 

3. 

4. 
5. 

6. 

7. 
8. 
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ECOU~EME~ FLUIDE ET TRANSFERT THERMIQUE DANS UN TUBE TOURNA~ 
SUR SON AXE ET SOUMIS A UNE CONVECTION EXTERNE 

R&mm~n analyse les effets de l’isolation exteme et de la rotation d’un tube sur le transfert thermique 
ii UR fluide qui s’&coule it l’interieur. L’ecoulement turbulent est suppose Etre hydr~~a~quement Ctabli. 
Le transfert de chaleur est fortement r&it par la rotation du tube. On montre que l’influence de l’isolation 

exteme sur le nombre de Nusselt augmente avec l’accroissement de la vitesse de rotation du tube. 

DER ~1~m.03 DER AugEREN ISOLATION AUF DIE WARMEUBERTRAGUNG IN 
EINEM AXIAL ROTIERENDEN. DURCHSTR~MTEN ROHR 

Zusammenfassun~--Der EinffuR des luBeren Warmeiibergangs und der Rotation auf die WLrme- 
itbertragung in einer turbulenten Rohrstriimung im Bereich des therm&hen Einlaufs wird theoretisch 
untersucht. Es wird an~enommen, daB das Ge~h~ndigkeitsprofil ~011 ausgebildet ist. Die Rotation hat 
aufgrund der radial ansteigenden Zentrifugalkriifte einen ausgepragten Einflug auf die Unterdrfickung der 
turbulenten Bewegung. Dadurch verschleehtert sich die Wlrmeiibertragung mit steigender Rotations- 
Reynoldszahl. Weiterhin zeigt sich, da13 der Einflug der augeren Isolation auf die Nusseltzahl mit steigender 

Rohrrotation zunimmt. 

TEYEHHE ~HjIKOCTH M TEI’IJIOIIEPEHOC B AKCHAJIbHO BPAIIIAIOIIIEHCjI TPYBE 
I-IPH HAJIMYHH BHEIIIHEH KOHBEKHHH 


